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Abstract

We propose a few-shot learning approach based on met-
ric learning in which the number of classes in the training
data to perform metric learning is increased. The number
of classes is augmented by synthesizing samples of imagi-
nary classes at a feature level from original training data.
The approach is evaluated using miniImageNet, and the ef-
fectiveness is demonstrated.

1. Introduction

Few-shot learning is a problem wherein new categories
are learned from only a few samples. Modern few-shot
learning uses prior knowledge from training data in addi-
tion to the target few-shot training samples. The main ap-
proaches are metric-learning, meta-learning, and data aug-
mentation.

This paper proposes a few-shot learning method based
on metric learning, focusing on increasing few-shot learn-
ing performance by increasing the number of classes in the
training data to perform metric learning. The data augmen-
tation approach used in previous few-shot learning works
expands the number of few-shot training samples. In con-
trast, we expand the number of classes in the training data
used for metric learning.

2. Method

Figure 1 outlines the proposed approach. The number of
classes Ctrainset in the original training set is expanded and
the class-augmented data set is used in metric learning. By
combining samples xa in original training set class c1 and
xb in class c2 ( ̸= c1), we generate a new sample xab of an
imaginary class l(c1, c2) that does not exist in the original
training set.

A convolutional neural network (CNN) is used for met-
ric learning and the trained CNN is used as the embedding
function for few-shot learning. A new sample is synthesized
by combining original samples in a feature map of the CNN
during the CNN training. In the embedding space obtained
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Figure 1. Overview of the proposed approach.

via metric learning, with the few-shot samples serving as
the training data, the testing set class is identified with a
classifier.

In the experiment, we use a CNN consisting of four con-
volution layers followed by three fully connected layers.
Each convolution layer has a 3 × 3 convolution with 64
filters, followed by batch normalization, a ReLU activation
function, and a 2×2 max-pooling. The first and second fully
connected layers have 4096 and 512 units, respectively.

The samples are combined in the feature map of the
fourth convolution layer by taking the element-wise max-
imum. The output from the first fully connected layer is
used as an embedding vector. The nearest neighbor method
using cosine similarity is used as the classifier.

The combining method is similar to the mixup [7], How-
ever, our method takes the maximum in the feature level and
does not mix the class labels.

3. Experimental Results
The proposed method was evaluated using the miniIma-

geNet [6] following the split introduced by [4]. The images
were resized to 84× 84 pixels.

First, the accuracy of few-shot learning when all classes
in the original training set (Ctrainset classes) were used
in metric learning was compared with the accuracy for
m × Ctrainset classes (m < 1) selected at random from
the original training set. We also compared it with the case
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Figure 2. Accuracy of few-shot learning when the number of
classes used in metric learning is decreased and when the number
of samples per class is decreased by the same rate instead of re-
ducing the number of classes. It can be seen that the number of
classes has a greater impact on the accuracy of few-shot learning
than the number of samples per class.
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Figure 3. Accuracy of few-shot learning when the number of
classes used in metric learning is increased by m times the original
number of classes.

Table 1. Performance of the proposed method on miniImageNet.

method
5-way accuracy (%)

1-shot 5-shot

proposed (m = 3) 52.57±0.57 64.32±0.47
baseline (m = 1) 50.39±0.55 62.81±0.46

when the number of samples per class was decreased by the
same rate instead of reducing the number of classes. Figure
2 shows the results. The solid lines represent the accuracy
when the number of classes was reduced and the dashed
lines represent the results when the number of samples per
class was reduced. Results show that the number of classes
has a greater impact on the accuracy of few-shot learning
than the number of samples per class.

Next, we evaluated the performance of the proposed
method on miniImageNet when the number of classes in the
training set for metric learning was increased by m (> 1)
times the original number of classes. Figure 3 shows the
results. The accuracy of few-shot learning increases as the
number of classes used in metric learning increases until
m = 3. By increasing the number of classes by 3 times, the
accuracy increases by 2.18 points from 50.39% to 52.57%
for 5-way 1-shot learning. However, the accuracy decreases

Table 2. Comparison of the performance on miniImageNet with
some existing methods that used four convolutional layers with 64
filter channels.

Method
5-way accuracy (%)

1-shot 5-shot

DN4 [1] 51.24±0.74 71.02±0.64
TPN [2] 55.51±0.86 69.86±0.65
Dynamic Few-Shot [3] 56.20±0.86 72.81±0.62
Meta-Learn LSTM [4] 43.44±0.77 60.60±0.71
MAML [5] 48.70±1.84 63.11±0.92
Matching Nets [6] 43.56±0.84 55.31±0.73

Ours (m = 3) 52.57±0.57 64.32±0.47

when the number of classes is increased by 4 times com-
pared to when the number is increased by 3 times. This was
probably because the difference between the classes was
then smaller than the difference within each class. Table
1 summarizes the performance of the proposed method.

Table 2 shows the comparison of the performance on
miniImageNet with some existing methods that used four
convolutional layers with 64 filter channels. Although our
method used a simple classifier, it achieved an accuracy
comparable to some of the existing methods.

4. Conclusion
This paper proposed a few-shot learning approach that

uses an increased number of classes for the training data to
perform metric learning. The approach was evaluated using
miniImageNet. Although the proposed method is relatively
simple, the method demonstrated good performance.
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